Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse
نویسنده
چکیده
We propose an algorithm for multistage stochastic linear programs with recourse where random quantities in different stages are independent. The algorithm approximates successively expected recourse functions by building up valid cutting planes to support these functions from below. In each iteration, for the expected recourse function in each stage, one cutting plane is generated using the dual extreme points of the next-stage problem that have been found so far. We prove that the algorithm is convergent with probability one.
منابع مشابه
A Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse
We propose an algorithm for multistage stochastic linear programs with recourse where random quantities in di erent stages are independent. The algorithm successively approximates expected recourse functions by building up valid cutting planes to support these functions from below. In each iteration, for the expected recourse function in each stage, one cutting-plane is generated using the dual...
متن کاملCut sharing for multistage stochastic linear programs with interstage dependency
Multistage stochastic programs with interstage independent random parameters have recourse functions that do not depend on the state of the system. Decomposition-based algorithms can exploit this structure by sharing cuts (outer-linearizations of time recourse function) among different scenario subproblems at the same stage. The ability to share cuts is necessary in practical implementations of...
متن کاملConvergence Analysis of Sampling-Based Decomposition Methods for Risk-Averse Multistage Stochastic Convex Programs
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the al...
متن کاملL-shaped decomposition of two-stage stochastic programs with integer recourse
We consider two-stage stochastic programming problems with integer recourse. The L-shaped method of stochastic linear programming is generalized to these problems by using generalized Benders decomposition. Nonlinear feasibility and optimality cuts are determined via general duality theory and can be generated when the second stage problem is solved by standard techniques. Finite convergence of...
متن کاملCutting Planes for Multistage Stochastic Integer Programs
This paper addresses the problem of finding cutting planes for multi-stage stochastic integer programs.We give a general method for generating cutting planes for multi-stage stochastic integer programs basedon combining inequalities that are valid for the individual scenarios. We apply the method to generatecuts for a stochastic version of a dynamic knapsack problem and to stochasti...
متن کامل